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Summary

-)The generalized median of H. Oja yields a notion of bivariate
quantile and in turn, an affine invariant bivariate analogue of the
sign test. Its properties include a simple null covariance formula,
facilitating a permutation or sign change test in the case of
bivariate symmetry, normal efficiency coinciding with that of the Oja
median, and bounded influence, hence strong robustness.
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1.  INTRODUCTION

] The task of finding affine-invariant bivariate procedures which
are analogues of univariate rank methods is not straightforward; see
Barnett (1976) and the accompanying discussion for some of the
difficulties. Recently, however Brown and Hettmensperger (1987)
derived affine invariant bivariate analogues of both Wilcoxon rank-sum
and signed rank tests, in bivariate two-sample and one-sample
symmetric problems. This is done by combining the bivar-iate median
of Oja (19683) with a linear-model approach of Jaeckel (1972). The
Oja median minimizes an objective function which is the sum of areas
of certain triangles and the gradients of this function yield a notion
of bivariate quantile. The pr_oposed tests are genuine Wilcoxon

analogues through involving bivariate "quantile” rather than

univariate rank. For tests in one and two-way layouts analogous to
the Kruskal-Wallis and Friedman tests see Brown and Hettmansperger
(1986).

In addition permutation tests are available through convéntioml

arguments of sign change in the one-sample and permutation in the

. two-sample pi'oblem. Null covariance matrices have simple and easily
computable forms, yielding convenient large sample normal or
chi-squared approximations.

The gradient of the Oja objective function is just the bivariate
quantile of the tested parameter vector, and when used as a test
statistic, hereafter called the Oja sign test (OS test), should
constitute a univariate sign test analogue. However, a sign change

argument cannot be applied directly to the OS test to find its
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conditional covariance matrix. Hence, at first sight, it appears

that no convenient large sample test is available.

The present paper focuses on the one-sample case of bivariate
symmetry, and does two things.

(1) It is shown that the OS test can be re-written in a form
which does show‘it to be a sign-test analogue. At the same
time, its null covariance matrix reduces to a simple and
easily computable form, and large-sample approximations are
available.

(i1) The test efficiency for normal sampling is derived, and
shom to coincide with the normal estimation-efficiency of
the Oja median (Oja and Niinimaa, 1985). It is also
possible to calculate a bivariate version of the influence
function, and the resulting form is bounded, as is the case
for the univariate sign test, and shows the 0S test to be of
high robustness.

Sections 2 and 3,4 contain (i) and (ii) respectively.

2. FORMULATION
Sowme material from Brown and Hettmansperger (1987) is now

suzmarized briefly. Let x ..xn.e be 2x1 vectors with {xi}

|

independent and with distribution syuinetric about 6 The Oja

o
objective function is
T(8) = ) ) A(x;.x.6)
1<J
where A(a.b.c) is the area of a triangle whose vertices are a,b,c.

The Oja generalized median 3 is the choice of 6 to minimize T. The

quantile of 8 is the vector whose components are derivatives of T with

respect to components of 8; {t is
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1
ae) =5)) u(x . x: 6) (1)
: 1<3

where the "repulsion vector” u(xi.sz 6) has magnitude Ixi-le and
direction perpendicular to and away from the chord (xi.xj) towards 6.
A bivariate sign test analogue uses Q(Oo) to test l-lo= 0= 90: in the
univariate case the sign test statistic is exactly the centered
quantile. The null hypothesis is rejected when Q(Go) is far from the
zZero vector, as measured by a quadratic form in Q(eo).

In what follows, take Oo = 0 without loss of generality and let
“ij = u(x‘.xj: 0). v“ = u(xi.-xJ: 0). The quantile Q as expressed
in (1) is not an obvious sign-test analogue.

But write u“ = %((uu + vu) + (t.l1J - vu)}. Some s#mple
geometry shows that

“iJ + Vig = u(xj.-xJ: -xi)
YR/ Y R “(xi"xi‘ J)‘
Substituting in (1) gives
Q0) = § ) ) utxgxy: x,) (2)
123
1
130, @
i

where
Qi = 2 u(xj.-sz -xi).
J
(3#1)
An alternative expression for Q comes also from (2). Note that

for fixed xJ. all u(xj.—xj; -xi) are perpendicular to (-xj.xj) with

magni tude 2|xJ|. and direction determined by which side of the chord

(-xj.xj) the point X, falls. Thus, let the extended chord (-xJ.xj)




v

divide the plane into half-planes P*.P_: let aJ be the vector xJ

rotated counter-clockwise through %t. so that u(xj.-xj: -xi) = % aj
for all i, and let P" be the half plane into which nj points. Let
Ty 8y be the numbers of {-x,. i # J} € P_,P_ respectively. Then
summing first over i in (2) yields

Q(0) = % 2 na . | (4)
J

where nj = rj - 'j'

The representation (4) may provide the best way to calculate Q,
but the easiest derivation and computation of the covariance matrix of
Q comes from (3). The analogue to the sign test is also best seen
from (3). since each Q‘ in some sense measures the position of X,
relative to the rest of the symmetrized sample.

Under the assumption of bivariate symmetry (xi) is a realization
of {'ixi) where (l‘) are independent random variables each equalling
£ 1 with probabilities %.% Clearly Qi depends on all ('j) only
through 5. Therefore, conditional on the collection (% xj).

Q= Qi(xi) and Qi('ixi) = '1Qi(xi)' and (3) is a sum of independent
random variables with vector coefficients. Thus E(Q) = O and the
null covariance matrix of Q(0) is
1 T
c=i)aq". (5)
i
A permutation or "sign-change” test against a general alternative

may be carried out as follows. Let
1
Q=3 2 Q-
i
Cenerate all 2" possible values for ('1) and hence for Qs; refer the

observed value of QTC-IQ to the population of 2" values of Q':;C-IQs and

calculate a significiance level accordingly.




If n is large, this exact test can be modified to a Nonte Carlo
test where the ('i} are generated at random. Altermatively, a large
sample approximation is avajilable. Conditiomal on (Ql)' each Q_ is
the sum of independent random vectors and approximately normal for
large n, with covariance matrix C. Thus the approximate null
distribution to which QTC-IQ should be referred is x3.

3. EFFICIENCY

(v}
Again without loss of generality now take 00 = 0. The null

Tests of Hy: 8 = 6, are based on Q(6,) = 30 g UxgXg5 8p).

covariance matrix of Q(0) is C = %3 2 Q‘Qi‘r: see (5). The actual
test statistic is Q'(0)C 'Q(0). Let B =E(C); the U-statistic-like
structure of C shows that n-s(C-B) converges almost surely to zero as
n-+% as long as (xi) are drawn from an integrable bivariate
distribution. The asymptotic behaviours of Q' (0)C 'Q(0) and
QT(O)B.IQ(O) therefore coincide, and in assessing efficiency via a
sequence of alternatives within O(n-llz) of the null, it is easy to
show that the asymptotic distribution of QTB-IQ is noncentral x3 with
noncentrality parameter

p'D"B g,
where 0 = n-llzﬁ. a-= EO{Q(G)) and D is the matrix of derivatives of a
with respect to components of 6. Thus (see Bickel, 1965) the Pitman
efficacy of the OS test appears to depend on the direction of the
altem;tive. B. However, it will turn out that DB D is
proportional to an orthogonal matrix (see Propositions 1 and 2), so

the noncentrality parameter in fact does not depend on the direction

of B. Taking B to be a unit vector, a large sample efficiency factor




for the test is just

e = BID'B Ipg, (6)

which will equal the common eigenvalue of p's"p.
Now consider normal efficiency of the OS test relative to the

Both OS and t~ test are affine invariant, so

least squares t-test.

(xi} may be assumed independent N(O.Iz). the bivariate circular normal

distribution.

It is easy to verify that for least squares D = 12. B = n-1 9°

and hence that e g ="
For the OS test, the calculation of s is broken into two parts,

first the calculation of a,D and second the calculation of B.
i
PROPOSITION 1. p -« BEL) ¢
P4 2
Proof. In this proof the direction of a line is taken to be an angle

|

|

|

|

v, or v+w; that is, it is immaterial whether forwards or backwards
orientation of the line is used.

l First note that x, - xJ and %(xie-xj) are independent, and hence
that conditioning on the direction a % %r of e xJ does not

inf luence %(xi-bxj). The repulsion vector u(xi.sz 6) has direction
aora+w. Since (xi.xj) and its negative are equi-probable, the

contribution to E{u(x 6)} from all (xi.xj) is zero apart from

1.XJ:

those (xi.xj) for which u(xi.x 8) = u(-xi.-x 8). Projecting onto

J: J:
the direction a of the vector u, this condition means that the
projection of 6 cannot lie between those of the mid-points %(xi-ﬁxj).

- %(xiﬂ»xj) of chords joining (xi.xj) and (-xi.-xj). That is,




0 < (%(xi*xj) - o7 cosal.(- %(xi-o-xj) - g)T[cos=

'
1 T[cosa] 2 T |cosa] 2,
= -|§(xi+xj) [sina]l + lo sina]l '

so the only xi.x‘1 making non-zero contribution to E{u(xi.xj; e)}

satisfy
3oeme T (22521 < 167 (2] )

Recall that conditional on the direction a, i.e. on

T
(x;=x,) 3?’..2] =0,

%(xi*xj) x N(O.%Iz) so for small |6]. the probability of (7) is

~1/2,T|cosa A
2712167 (22%2] | + o( o) (8)
The vector u(xi.xj: 0) has magni tude Ixi-le and is in the

direction (cosa, sim)T with sign as yet unspecified. To get the
sign, project both 6 and the chord mid-point %(xi+x j) on to the
direction a, and note that u points away from the chord towards 6, by

definition, so that

u(xi.xj; 0) = Ixi.le :‘i’:] sgn[ {6 - %(xi-vxj)}T[g::z]].

However, for (xi.xj) obeying (7). the sign factor = sgn[(cosa.sina)@].

172

Since E{ Ixi-x jl} = 2r ', combining with (8) gives the corresponding

contribution to E{(Q(8)} of




SN PRI Y .-‘.

14 T
' [sina [lim + of |6|).

2 cos?a cosa sina
* ¥ lcosa sina sin®a o + o(|8]).

Now a is a uniform angle, with E{(cos?a) = % = E(sin%a),

E(cosa sina) = O, so finally
a0) = 221 15 4 o(J0]). and

2 2

D = “(‘2‘—;—11 1, (9)

PROPOSITION 2. B

3

n a
= 12+o(n ).
L §

Proof. Referring to (5), a typical term of C is proportional to
T
u(x Xy i)u (xk xk xi) + u(x.k.-xk: -xi)u (xj.-xj; -xi).
Let x': = 1{cos(ai+§r). sin(aﬁ-%r)). By the independence of

{ri). {ai}. the expectation of such a typical term, given xJ.x.k. i

%¢ (c s.)
% S| 2
(e s 2y | Ol (10)

where (ci.si) = (cosai. sinai). and where in the last term, the factor

Iaj-ak| is the shortest absolute rotation between a, and a e and thus

J
€ [0.,7]. This factor arises from considering the possible positions
of xq in the four sectors defined by chords (xJ.-xj) and (xk.-xk). and

the corresponding signs of repulsion vectors u.
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But cyop = %(cos(aj‘fak) + cos(aj-ak)}. cySy + S8y = sin(ajﬂzk).

and 'j'k = %{cos(aj-ak) - cos(aji-a.k)}. Now aimj and ai-a‘j are

independent and each is distributed as U(-¥.¥), with cos and sin of

a,fa

1*%; having mean zero, so averaging over a

.a, reduces (10) to

1"

4 r Ty E [cos(ai—aj) [(l) (1)] {1- %Iai-ajl}].

=20y o 1)

Stnce E(ry) = E(r (2/7)1/2, the final result is:

n

= o [(n-1)(n-2) 32
y B = 16{ P =0 I2"0(1)}
na
v = ;3 I; + o(n%) (11).
'
' f » f the OS test c red to least squares

Applying the formula (6) with (9) and (11) gives

emz

nw
e and since eg="n the required efficiency is

efficiency (0S:LS) = }; = .785.
Kt This efficiency is greater than 2/ = .637, the normal efficiency
X of the univariate sign test, and the result agrees with the estimation

efficiency of the Oja median for bivariate normal data; see Oja and

Niinimaa (1985)

OAG 3 QOGHCO BAGN YN ¥y 1 N0 90 1 BV S TR N Y
A T G T g a T T T

BRORGAOA ) DA
W T A et a

K)



- 11 -

It is also possible to calculate the normal efficiency of the OS
test relative to the componentwise sign test, a non-affine invariant
test whose components are sign test statistics in the two co-ordinate

directions. Consider bivariate normal data with covariance matrix

2 lp
ea(le].

Then if X is N(0,I2), Z = AX is N(0,A®). But by affine invariance,
ew(A) = ’(3(12)'
Letting S be the vector of sign test statistics based on

components of Z,

a=ES) =n [ 120602) ]

= -n (21)2 6 + o(8]).

so that D = -n (2,')1/2 I Also, at 6 = 0

2°

1

cov(S) = n [ ) 1 2v arsin(p) ] - B.

2w “arsin (p) 1

The resulting expression for DTB-ID has unequal eigenval'ues
or In (1% 2n larsin p)-1 and the efficiency factor eg for the
componentwise sign test lies between these two values. The range of
the resulting relative efficiencies is

efficiency (0S:S) = ew/es = gz (1 1.21-1 arsin (p))
with the actual efficiency depending on the direction of the
alternative, as might be expected from the non-affine invariant nature
of the S test. The median of these efficiencies is ¥*/8 = 1.234,
indicating that the OS test is generally more efficient than the

componentwise sign test. :

Al
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8. ROBUSTNESS

It is convenient to describe robustness of the OS test in terms
of a bivariate analogue of Hampel's (1974) influence function. The
latter, though usually defined as a von-Nises derivative of certain
functionals, can also be specified for tests., in the context of
asymptotic theory, in the following way. covering both bivariate and
univariate cases.

Let T be a normalized test statistic based on a larzé number n of
observations, whose null distribution is standard normal. Suppose
sampling is from a distribution contaminated at a fixed point x, that
is with probability 1-e, sampling is from the hypothesized parent
distribution, but with probability ¢, an observation is x. If
contamination is O(n-uz). f.e. € = cn 2 for some ¢ > 0, then
typically the asymptotic variance or covariance matrix of T is
unaffected, but the null mean -+ cfl as n =+ ®. The vector 2 = (x) is
the influence due to contamination at x; 1its presence imposes a bias
on the asymptotic null distribution and a.distortion o_f test levels.

To evaluate Q for the OS test, the null mean and covariance
matrix of Q(0) under O(n-llz) contamination are required; as before
assume the parent distribution to be N(O, 12).

It is easy to see that covariance is unaffected asymptotically,

and that as previously calculated

cov{Q(0)} =B =35 I, (12).
To evaluate E{Q(0)}, use the form (4);: then

E{Q(0)} = %n(n—l) E(pa).
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where if x, is a typical observed vector, |a| = Ile and a is

perpendicular to xJ. pointing into the half plane P_'_. and 1f P,.P_ are

probabilities of other cbservations in P+.P_. then p = P,P_- If x.1

is from the contaminant x, then p = 0 but i1f x, is from N(O, 12). then

3

p=e¢ if x € P*. but p = -¢ if x € P_. Averaging over x.1 positions,

using the independence of orthogonal components of N(O, 12) and the -

fact that expected absolute value of N(0,1) is (2/'1)1/2 yields
E(Q(0)) = § n(n-1) e(1-¢) (m) 2 u
where u, is a unit vector in the direction of x.

172

Now let ¢ = cn and calculate the mean of the normalized

statistic B.VzQ(O) , i.e.

-1/72 1

B §n(n—1) cn.llz(l 172

~-cn ) (?11)1/2 u,

which from (12) approaches 2”2 yc u_as n +=. Thus for the 0

test, the influence fimction is

ax) = 272 wu_.
In depending only on the direction and not uagpitude of the
contaminant position x, this is analogous to influence for the

172 is attributable to the normal

univariate median. The factor 2
parent distribution. | In baving bounded influence, the.w test has
high robustness.

Another bivariate sign test analogue, though not affine
invariant, is the angle test, corresponding to the spatial median (see
Brown, 1983). Similar but easier calculations show the standard

normal influence function for angle tests to be

172
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which is also bounded, and wedian-analogous, with a smaller constant

m‘rfor the OS test can be seen as a

21’2, The larger constant 2"
modest price to pay for the important property of affine invariance.
Other influence functions which are readily calculated are
fi(x) = x for Hotelling's test based on the bivariate sample mean, and

therefore of unbounded influence as expected, and for the
componentwise sign test, where the test vector has univariate sign
tests as components, {}(x) = 21/211;. where u: is a unit vector
splitting the quadrant containing x. Thus the latter test, which is

not affine invariant, also has bounded influence.
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